High-Order Compact Finite Difference Schemes for Option Pricing in Stochastic Volatility Models on Non-Uniform Grids

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids

We derive high-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids. The schemes are fourth-order accurate in space and secondorder accurate in time for vanishing correlation. In our numerical study we obtain highorder numerical convergence also for non-zero correlation and non-smooth payoffs which are typical in option pricing. In all ...

متن کامل

High-order compact finite difference scheme for option pricing in stochastic volatility models

We derive a new compact high-order finite difference scheme for option pricing in stochastic volatility models. The scheme is fourth order accurate in space and second order accurate in time. To prove results on the unconditional stability in the sense of von Neumann we perform a thorough Fourier analysis of the problem and deduce convergence of our scheme. We present results of numerical exper...

متن کامل

Essentially high-order compact schemes with application to stochastic volatility models on non-uniform grids

We present high-order compact schemes for a linear second-order parabolic partial differential equation (PDE) with mixed second-order derivative terms in two spatial dimensions. The schemes are applied to option pricing PDE for a family of stochastic volatility models. We use a nonuniform grid with more grid-points around the strike price. The schemes are fourth-order accurate in space and seco...

متن کامل

Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations

This article presents a family of very high-order non-uniform grid compact finite difference schemes with spatial orders of accuracy ranging from 4th to 20th for the incompressible Navier–Stokes equations. The high-order compact schemes on non-uniform grids developed in Shukla and Zhong [R.K. Shukla, X. Zhong, Derivation of high-order compact finite difference schemes for non-uniform grid using...

متن کامل

On Compact High Order Finite Difference Schemes for Linear Schrödinger Problem on Non-uniform Meshes

In the present paper a general technique is developed for construction of compact high-order finite difference schemes to approximate Schrödinger problems on nonuniform meshes. Conservation of the finite difference schemes is investigated. The same technique is applied to construct compact high-order approximations of the Robin and Szeftel type boundary conditions. Results of computational expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2013

ISSN: 1556-5068

DOI: 10.2139/ssrn.2295581